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At the Speed of Sound: Gene Discovery in the Auditory System
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As auditory genes and deafness-associated mutations are discovered at a rapid rate, exciting opportunities have
arisen to uncover the molecular mechanisms underlying hearing and hearing impairment. Single genes have been
identified to be pathogenic for dominant or recessive forms of nonsyndromic hearing loss, syndromic hearing loss,
and, in some cases, even multiple forms of hearing loss. Modifier loci and genes have been found, and investigations
into their role in the hearing process will yield valuable insight into the fundamental processes of the auditory

system.

Introduction

Over the past 5 years, remarkable progress has been
made in the identification of new loci for nonsyndromic
hearing impairment (NSHI) and in the cloning of deaf-
ness genes (fig. 1; table 1). To date, 77 loci have been
reported for nonsyndromic deafness: 40 autosomal dom-
inant, 30 autosomal recessive, and 7 X-linked (Hered-
itary Hearing Loss Homepage). In addition, 51 auditory
genes have been identified: 15 for autosomal dominant
NSHI loci, 9 for autosomal recessive NSHI loci, 2 for
X-linked NSHI loci, § mitochondrial, and =32 genes
for syndromic hearing loss (note that some genes cause
multiple forms of deafness) (table 1). Although signifi-
cant advances have been made, there is no doubt that
many more genes await discovery. Identifying these
genes and characterizing the proteins they encode will
increase our knowledge of the molecular processes in-
volved in the auditory system and will improve our un-
derstanding of how such processes can become altered
and lead to hearing impairment.

Hearing loss is a common sensory disorder in the
human population. The incidence of congenital hearing
loss is estimated at 1 in 1,000 births, of which approx-
imately equal numbers of cases are attributed to envi-
ronmental and genetic factors (fig. 2) (Morton 1991;
Gorlin et al. 1995). Environmental factors leading to
hearing loss include acoustic trauma, ototoxic drugs
(e.g., aminoglycosides), and bacterial and viral infec-
tions. Of the hearing-loss disorders attributable to ge-

Received August 17, 2001; accepted for publication August 29,
2001; electronically published September 27, 2001.

Address for correspondence and reprints: Dr. Cynthia C. Morton,
Department of Pathology, Brigham and Women’s Hospital, 75 Francis
Street, Boston, MA 02115. E-mail: cmorton@partners.org

© 2001 by The American Society of Human Genetics. All rights reserved.
0002-9297/2001/6905-0002$02.00

netic causes, ~70% are classified as nonsyndromic and
the remaining 30% as syndromic. Hundreds of syn-
dromic forms of deafness have been described, and the
underlying genetic mutation has been identified for
many of the more common forms (table 1) (Gorlin et
al. 1995; Steel and Kros 2001). Among the many dis-
orders classified as syndromic hearing loss, the pathol-
ogy varies widely, but, in nonsyndromic deafness, the
defect is generally sensorineural.

Nonsyndromic hearing impairment can be further
subdivided by mode of inheritance: ~77% of cases are
autosomal recessive, 22 % are autosomal dominant, 1%
are X-linked, and <1% are due to mitochondrial in-
heritance (fig. 2) (Morton 1991). Dominant loci are
denoted with the prefix “DFNA,” recessive loci with
“DFNB,” X-linked loci with “DFN,” and modifying
loci with “DFNM.” Generally, patients with autosomal
recessive hearing impairment have prelingual and pro-
found deafness, and patients with autosomal dominant
hearing impairment have progressive and postlingual
hearing impairment. This observation may be explained
by the complete absence of functional protein in patients
with recessive disorders, whereas, in patients with au-
tosomal dominant disorders, dominant mutations may
be consistent with initial function and subsequent hear-
ing impairment due to accumulation of pathology.

Genes Involved in Deafness

The cochlea is an intricate organ composed of dozens
of cell types and specialized regions required for the nor-
mal process of hearing. Of the genes responsible for deaf-
ness, many of the encoded proteins have been shown to
be expressed within the cochlea and can be grouped into
functional categories that are instructive in providing
insight into the biology of hearing (fig. 3).
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Figure 1
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Timeline indicating the years in which genes were identified as causing deafness. Genes are listed in chronological order within

the year in which mutations were first identified as causing nonsyndromic (red), syndromic (blue), or mitochondrial (green) deafness. An asterisk
(*) indicates that mutations in a particular gene cause multiple forms of deafness in that classification (for example, MYO7A, which is colored
red and has an asterisk, causes both dominant and recessive nonsyndromic deafness). See table 1 for disorders associated with each gene.

Hair-Cell Structure

The intricate nature of the sensory epithelium and its
highly organized stereocilia necessitates that a precise
structure be maintained to ensure proper function. This
is supported by the number of deafness-associated mu-
tations in genes encoding structural proteins found in hair
cells. Two unconventional myosin genes, MYO7A (MIM
276903) and MYO15 (MIM 602666), have been shown
to play a critical role in the structural integrity of the
stereocilia (table 1) (reviewed by Friedman et al. [1999]).
In addition to the important function of MYO7A in the
inner ear, as evidenced by its etiology in DFNA11 (MIM
601317) and DFNB2 (MIM 600060]), its involvement in
Usher syndrome type 1B (USH1B [MIM 276903) dem-
onstrates that similar macromolecular interactions are re-
quired for proper function in both the ear and eye. Also,
the human orthologs for the genes mutated in the mouse
waltzer (Cdh23; Mouse Genome Informatics [MGI] ac-
cession number 1890219) and Ames waltzer (Pcdhl35;
MGI accession number 1891428) have recently been iden-
tified in persons with Usher syndrome type 1D (USH1D
[MIM 601067]) (Bolz et al. 2001; Bork et al. 2001) and
Usher syndrome type 1F (USH1F [MIM 605514]) (Ah-
med et al. 2001; Alagramam et al. 2001), respectively.
Another myosin gene, MYO6 (MIM 600970), found to
result in the disorganization and fusion of stereocilia in
Snell’s waltzer mouse when defective (Self et al. 1999;
Melchionda et al. 2001), accounts for nonsyndromic au-
tosomal dominant hearing loss in an Italian family (Mel-
chionda et al. 2001). Though the predicted role of MYO6
in anchoring the stereocilia is crucial in the ear, a lack of
phenotype in the eye demonstrates that this function is
not necessary for vision.

Extracellular Matrix

Comparable to the fundamental role of structural pro-
teins in the proper functioning of the stereocilia, the
importance of extracellular matrix genes to other struc-
tures in the ear is illustrated by mutations in these genes
that affect hearing (table 1). Several collagens are im-
portant for integrity in many organ systems, and the
inner ear is no exception (table 1). Similarly, disruption
of usherin (MIM 276901), a laminin homolog and part
of the extracellular matrix in the cochlea and Buchs
membrane of the eye, results in Usher syndrome type
2A (USH2A [MIM 276901]) (Eudy et al. 1998). DFNA9
(MIM 601369), a dominant nonsyndromic deafness dis-
order with vestibular pathology, is caused by mutations
in COCH (MIM 603196), which encodes a secreted pro-
tein (Robertson et al. 1998). The presence of the mutant
protein causes a loss of cells in the spiral ligament and
limbus and the accumulation of acidophilic deposits in
the nerve channels and supporting tissues of the organ
of Corti, perhaps leading to compression or blockage of
the cochlear nerve. The importance of the tectorial
membrane, which is composed of an extracellular ma-
trix, in the conduction of sound is supported by the
findings that mutations in TECTA (MIM 602574),
which codes for the tectorial membrane protein a-tec-
torin, are etiologic for both the dominant DFNAS8/12
(MIM 601543, MIM 601842) (Verhoeven et al. 1998)
and recessive DFNB21 (MIM 603629) (Mustapha et al.
1999) nonsyndromic deafness disorders.

lon Homeostasis

The primary organization of compartmentalization
and ionic balance of fluids in the ear has been highlighted
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syndromic deafness disorders are listed.

by the number of gap junctions and ion channels found
to control critical transport of different molecules. Mu-
tations in the gap junction subunits, connexins, are eti-
ologic in several types of nonsyndromic deafness, with
GJB2 (encoding connexin 26 [MIM 121011]) being re-
sponsible for as much as 50% of profound congenital
nonsyndromic recessive deafness in some populations
(Rabionet et al. 2000). Several potassium channels, in-
cluding KCNQ4 (MIM 603537) and KCNE1 (MIM
176261), are also crucial because of their role in K*
recycling (reviewed by Steel [1999]). With the ion flux
created by the aforementioned proteins, it is critical to
keep inner ear fluids separate to maintain a resting
potential. The discovery of pathogenic mutations in
CLDN14 (MIM 605608) in DFNB29 (MIM 605608)
identified a tight junction protein involved in compart-
mentalization of endolymph (Wilcox et al. 2001).

Transcription Factors

As with other biological pathways, transcription factors
are essential in hearing, and defects in these proteins help
to elucidate critical components in this process. One path-
way has been partially defined by the discovery of inter-
actions between MITF (MIM 156845), PAX3 (MIM
193500), and SOX10 (MIM 602229), which have been
found to be defective in different types of Waardenburg
syndromes (types I [MIM 193510], II [MIM 193500], III
[MIM 148820], and IV [MIM 277580]). MITF is known
to be a key player in the regulation of melanocyte de-

(DENA1-DFNA40)

~77% Autosomal Recessive
(DFNB1-DFNB30)

1% | X-Linked

‘ (DFN1-DFN8)

<<% Mitochondrial |

Classification of etiologies of deafness. Some examples of environmental causes of deafness and of more-common forms of

velopment which, when interrupted, disrupts pigmenta-
tion as well as hearing function (Tachibana et al. 1996).
It has since been discovered that SOX10 and PAX3 syn-
ergistically transactivate MITF and that pathogenic mu-
tations in SOX10 or PAX3 disrupt their binding to and
induction of the MITF promoter (Bondurand et al. 2000;
Potterf et al. 2000).

Another family of transcription factors, the EYA
genes, is critical in embryonic development. Although it
has been known that branchio-oto-renal (BOR [MIM
113650]) and branchio-otic (BO [MIM 602588]) syn-
dromes are allelic disorders resulting from mutations in
EYA1 (MIM 601653) (Abdelhak et al. 1997; Vincent et
al. 1997), it has just recently been discovered that
DFNA10 (MIM 601316) is due to mutations in EYA4
(MIM 603550), which is predicted to function in the
mature organ of Corti (Wayne et al. 2001). The absence
of syndromic features associated with DFNA10 is in-
triguing and is suggestive of redundancy during embry-
ogenesis or of various functions affected differentially
by known mutations.

Miscellaneous

Some proteins associated with hearing loss do not fit
into any summary categories and may represent the first
members of new groups of proteins whose importance
is only now being appreciated. Mutations in a novel
serine protease gene, TMPRSS3 (MIM 605511), were
found in DFNB8/10 (MIM 601072 and MIM 605316)
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Table 1

Chronological List of Deafness Genes Identified Since 1986

Number and Gene

Map Position

Type of Hearing Loss®

Disorder

Date First Reported

Reference

1.
2.
3.

= \O0 o ]

11.
12.
13.

14.
15.

16.
17.

18

19.
20.
21.
22.
23.

24.

COL1A2 (MIM 120160)
COL4AS (MIM 303630)
tRNA-len (MIM 590050)

. tRNA-lys (MIM 590060)
. PAX3

. NDP (MIM 310660)
. 128 rRNA (MIM 561000)
. COL4A3 (MIM 120070)

. COL4A4 (MIM 120131)
0. tRNA-ser (MIM 590080)

MITF

COL11A2

EYA1

MYO7A

SOX9 (MIM 114290)

POU3F4 (MIM 300039)
tRNA-glu (MIM 590025)

EDNRB (MIM 131244)
TCOF1 (MIM 154500)

. EDN3 (MIM 131242)
COL2A1 (MIM 120140)
COL11A1 (MIM 120280)
DDP (MIM 304700)

KVLOT1 (MIM 192500)

7q22.1
Xq22
Mitochondrial

Mitochondrial
2q35
Xp11.3

Mitochondrial
2q36-q37
2q36-q37
Mitochondrial

3p14.1-p12.3
17924.3-q25.1
6p21.3

Xq21.1
Mitochondrial

13q22
5932-q33.1
20q13.2-q13.3
12q13.11-q13.2
1p21

Xq22

8q13.3

11p15.5

11q12.3-q21

SHL
SHL
SHL

SHL

SHL

SHL

NSHL

SHL

SHL

NSHL + SHL

SHL
SHL
NSHL + SHL

NSHL
SHL

SHL
SHL
SHL
SHL
SHL
NSHL
SHL
SHL

NSHL + SHL

Osteogenesis imperfecta (MIM 166200)

Alport syndrome (MIM 104200 and MIM 203780)

Myopathy, encephalopathy, lactic acidosis and
stroke-like episodes (MELAS [MIM 540000])

Diabetes mellitis and deafness (MIM 520000)

Myoclonic epilepsy and ragged-red fiber disease
(MERRF [MIM 545000])

Waardenburg syndrome type I

Waardenburg syndrome types I and III

Norrie disease (MIM 310600)

Mitochondrial deafness (MIM 221745)

Alport syndrome

Alport syndrome

Sensorineural deafness (MIM 590080)

Progressive myoclonic epilepsy, ataxia, and hearing
loss (MIM 590080)

Palmoplantar keratoderma and deafness (MIM
590080)

Waardenburg syndrome type II

Campomelic dysplasia (MIM 114290)

Stickler syndrome (STL2 [MIM 604841])

DENA13 (MIM 601868)

DFN3 (MIM 304400)

Maternally inherited diabetes and deafness (MIM
590025)

Waardenburg syndrome type IV

Treacher Collins (MIM 154500)

Waardenburg syndrome type IV

Stickler syndrome (STL1 [MIM 108300])

Stickler syndrome (STL2)

DFN1 (MIM 304700)

BOR syndrome

Jervell and Lange-Nielsen Syndrome (JLNS1 [MIM
220400])

DENA11

July 1986
June 1990
December 1990

August 1992
June 1990

February 1992
March 1993
June 1992

June 1992

July 1993
September 1994
September 1994
October 1994
August 1995

January 1998

November 1994
December 1994
February 1995
December 1999
February 1995
May 1995

December 1995
February 1996
April 1996
June 1996
September 1996
October 1996
February 1997
February 1997

March 1997

Sykes et al. 1986
Barker et al. 1990
Goto et al. 1990

van den Ouweland et al. 1992
Shoffner et al. 1990

Tassabehji et al. 1992
Hoth et al. 1993
Berger et al. 1992
Chen et al. 1992
Prezant et al. 1993
Mochizuki et al. 1994
Mochizuki et al. 1994
Reid et al. 1994
Tiranti et al. 1995

Sevior et al. 1998

Tassabehji et al. 1994
Foster et al. 1994
Vikkula et al. 1995
McGuirt et al. 1999
de Kok et al. 1995
Hao et al. 1995

Attie et al. 1995
Dixon 1996

Edery et al. 1996
Williams et al. 1996
Richards et al. 1996
Jin et al. 1996
Abdelhak et al. 1997
Neyroud et al. 1997

Liu et al. 1997¢
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25.

26.
27.

28.

29.
30.
31.

32.
33.
34.
35.
36.
37.

38

43.

44,

45.
46.
47.
48.

49.
50.

51,

GJB2

DIAPH1 (MIM 602121)
KCNE1

PDS

SOX10
POU4E3 (MIM 602460)
TECTA

USH2A

MYO1S

DFNAS (MIM 600994
COCH

GJB3 (MIM 603324)
ATP6B1 (MIM 192132)

. KCNQ#4
39.
40.
41.
42.

OTOF (MIM 603681)
PMP22 (MIM 601097)
GJB6 (MIM 604418)

USH1C (MIM 605242)

MYH9

CDH23

CLDN14

TMPRSS3

EYA4

PCDH1S5 (MIM 605514)

MYOe6
USH3

WES1

13q12

5q31
21g22.1-q22.2

7q31; 7q21-34

22q13
5q31
11q22-q24

1q41
17p11.2
7plS
14q12-q13
1p34
2cen-q13

1p34
2p22-p23
17p11.2
13q12
11p15.1

22q13

10q21-q22

21q22
21q22.3
6q22-q23
10q21-22

6q13
3q21-q25

4pl6

NSHL

NSHL
SHL

NSHL

SHL
NSHL
NSHL

SHL
NSHL
NSHL
NSHL
NSHL
SHL

NSHL
NSHL
SHL
NSHL
SHL

NSHL

NSHL

NSHL
NSHL
NSHL
SHL

NSHL
SHL
SHL

NSHL

+ SHL

+ SHL

+ SHL

DFNB2

DFNB2, USH1B
DFNB1

DFNA3

DFENA1 (MIM 124900)

Jervell and Lange-Nielsen Syndrome (JLNS2 [MIM

220400])

Pendred syndrome (MIM 274600)

DFNB4

Waardenburg syndrome type IV

DENA1S (MIM 602459)
DFNAS, DFNA12
DFENB21

USH2A

DENB3 (MIM 600136)
DFNAS (MIM 600994)
DFNA9

DFNA2

Distal renal tubular acidosis associated with senso-
rineural deafness (MIM 267300)

DENA2
DFNB9 (MIM 601071)

Charcot-Marie-Tooth disease (MIM 118220)

DFNA3

Usher syndrome type 1C (USH1C [MIM 605242])

May-Hegglin (MIM 155100) and Fechtner (MIM

153640) syndromes
DENA17 (MIM 603622)
USH1D
USH1D and DFNB12
DFNB29
DFNBS8, DFNB10
DENA10
USH1F

DFNA22 (MIM 600970)
USH3
Wolfram syndrome

DFNA6/14

June 1997
June 1997
May 1997
May 1998
November 1997
November 1997

November 1997
December 1997
March 1998
February 1998
March 1998
May 1998
March 1999
June 1998

June 1998
October 1998
November 1998
December 1998
January 1999

February 1999
April 1999
June 1999
September 1999
September 2000
September 2000
September 2000

November 2000
January 2001
January 2001
January 2001
January 2001
February 2001
July 2001
August 2001
September 2001
October 2001
October 1998
December 1998
October 2001

Liu et al. 1997b
Weil et al. 1997
Kelsell et al. 1997
Denoyelle et al. 1998
Lynch et al. 1997
Tyson et al. 1997

Schulze-Bahr et al. 1997
Everett et al. 1997
Lietal. 1998
Pingault et al. 1998
Vahava et al. 1998
Verhoeven et al. 1998
Mustapha et al. 1999
Eudy et al. 1998
Wang et al. 1998
Van Laer et al. 1998
Robertson et al. 1998
Xia et al. 1998

Karet et al. 1999

Kubisch et al. 1999
Yasunaga et al. 1999
Kovach et al. 1999

Grifa et al. 1999

Verpy et al. 2000
Bitner-Glindzicz et al. 2000
The May-Hegglin/Fechtner

Syndrome Consortium 2000

Lalwani et al. 2000
Bolz et al. 2001

Bork et al. 2001
Wilcox et al. 2001
Scott et al. 2001
Wayne et al. 2001
Ahmed et al. 2001
Alagramam et al. 2001
Melchionda et al. 2001
Joensuu et al. 2001
Inoue et al. 1998
Strom et al. 1998
Bespalova et al., in press

®

SHL = syndromic hearing loss; NSHL = nonsyndromic hearing loss.
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Figure 3

Cross section of the cochlear duct, showing the major regions found within the cochlea. Selected genes and the regions in which

they are expressed are as follows: endolymphatic duct: PDS; hair cells: DIAPH1, POU4F3, MYO6, MYO7A, MYO15, KCNQ4, OTOE,
USH1C, MYH9, CDH23, and CLDN14; extracellular matrix: USH2A; Reissner’s membrane: MYH9 and CDH23; spiral ligament: COCH,
MYH?9, and NDP; spiral limbus: COCH, GJB2, GJB3, GJB6, and ATP6B1 (interdental cells); stria vascularis: NDP, KCNE1 (marginal cells),
and KVLQT1 (marginal cells); supporting cells: GJB2, GJB3, and GJB6; and tectorial membrane: TECTA. (Adapted with permission from

Steel [1999].)

and were correlated with the allelic difference observed
in the age at onset between DFNB8 and DFNB10 (Scott
et al. 2001). TMPRSS3 is the first example of a dys-
functional protease causing deafness, indicating that crit-
ical regulators of pathways in the inner ear are activated
through proteolytic cleavage. Homozygous and com-
pound heterozygous mutations in another novel gene,
USH3 (MIM 276902), have recently been shown to un-
derlie Usher syndrome type 3 (USH3 [MIM 276902])
(Joensuu et al. 2001). USH3 encodes a protein contain-
ing two predicted transmembrane domains with un-
known function and is expressed in many tissues, in-
cluding the retina (Joensuu et al. 2001). Mutations in
another gene, WFS1 (MIM 606201), responsible for
Wolfram syndrome (MIM 606201), an autosomal re-
cessive disorder characterized by diabetes mellitus, optic
atrophy, and often, deafness, has recently been found to
be responsible for the dominant nonsyndromic deafness
disorder, DFNA6/14 (Bespalova et al., in press). WES1
encodes a protein, called “wolframin,” containing nine
putative transmembrane domains with unknown func-
tion (Bespalova et al., in press). Interestingly, it is not
known why some WFS1 mutations selectively affect low-
frequency hearing (DFNAG6/14), whereas other WFS1
mutations affect higher frequencies, as in the hearing
loss associated with Wolfram syndrome (Bespalova et
al., in press).

Phenotypic Diversity

Gene discovery in the auditory system has provided
many examples that illustrate that mutations in one gene
may give rise to quite variable phenotypes. For example,
mutations in a single gene can lead to both syndromic
and nonsyndromic hearing loss (as is the case with
COL11A2 [MIM 120290], MYH9 [MIM 160775],
MYO?7A, PDS [MIM 274600], CDH23 [MIM 605516],
and WES1 [MIM 606201]). Moreover, mutations in a
single gene can cause both dominant and recessive forms
of nonsyndromic hearing loss (e.g., GJB2 for both
DFNA3 [MIM 601544] and DFNB1 [MIM 220290)],
and TECTA for DFNAS8/12 and DFNB21). These ex-
amples of phenotypic diversity demonstrate how the
type of mutation, the position of the mutation within
the gene, and allelic combinations (i.e., compound het-
erozygosity) can affect the overall clinical presentation.

MYO7A Mutations in DFNAT1, DFNB2, and USH1B

MYO7A mutations result in a range of human disease
phenotypes. A single MYO7A mutation causes deaf-
ness in an autosomal dominant nonsyndromic form
(DFNAT11) (Liu et al. 1997¢) and at least four mutations
result in a recessive nonsyndromic form (DFNB2) (Liu
et al. 1997b; Weil et al. 1997). Further, =41 mutations
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cause an autosomal recessive syndromic form of deaf-
ness that is accompanied by retinitis pigmentosa
(USH1B) (Weil et al. 1995; Weston et al. 1996; Adato
et al. 1997; Levy et al. 1997; Liu et al. 19974, 1998;
Janecke et al. 1999). Although MYO7A genotype-phe-
notype correlations are, in general, difficult to synthesize
coherently, it has been hypothesized that many of the
recessive MYO7A mutations are pathogenic by loss of
function (Liu et al. 1998; Janecke et al. 1999). In con-
trast, the DFNA11-associated MYO7A mutation is
likely to have a dominant negative effect; all DFNA11
patients have a 9-bp deletion in exon 22, which encodes
a coiled-coil domain important for homodimerization
(Liu et al. 1997¢). The precise mechanisms by which the
majority of MYO7A mutations lead to hearing loss are
not yet known, and the way in which mutations in the
same gene result in both syndromic and isolated hearing
impairment remains to be determined. The possibility
that tissue-specific differences in the function of MYO7A
may result in distinct mutations having variable effects
in the eye but similar effects in the inner ear is under
consideration (Liu et al. 1998).

CDH23 Mutations in DFNB12 and USHI1D

CDH23 mutations cause recessive hearing loss in both
nonsyndromic (DFNB12 [MIM 601386]) and syndromic
(USH1D) forms. Interestingly, a correlation between mu-
tation and phenotype seems to exist: six missense CDH23
mutations lead to amino acid substitutions and are found
in families with DFNB12, whereas two nonsense and two
splice-site mutations lead to truncated CDH23 protein
and are found in families with typical and atypical
USH1D (Bork et al. 2001).

GJB2 Mutations in DFNB1 and DFNA3

Mutations in GJB2 (encoding connexin 26), are path-
ogenetic in both autosomal dominant (DFNA3) and au-
tosomal recessive (DFNB1) forms of hearing loss (Kelsell
et al. 1997; Denoyelle et al. 1998). More than 50 GJB2
mutations have been identified and account for as much
as 50% of all congenital cases of nonsyndromic hearing
impairment, with a high prevalence of three mutations
(35delG, 167delT, and 235delC) in specific populations
(white, Ashkenazi Jewish, and Asian, respectively) (Con-
nexins and Deafness Homepage). The severity of hearing
loss and the likelihood of progression are variable, even
with a single mutation, complicating predictions of phe-
notype in the setting of genetic counseling.

PDS Mutations in DFNB4 and Pendred Syndrome

Mutations in PDS, encoding an anion transporter
named “pendrin” which is proposed to function in en-
dolymphatic fluid homeostasis (Everett et al. 1999),
cause recessive hearing loss in both nonsyndromic
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(DFNB4 [MIM 600791]) and syndromic (Pendred syn-
drome [MIM 274600]) forms (Everett et al. 1997; Li
et al. 1998). At least 47 different PDS mutations, most
of which are specific to individual families, are asso-
ciated with either DFNB4 or Pendred syndrome and
are thought to adversely affect fluid homeostasis, re-
sulting in the cochlear malformations and temporal
bone anomalies that eventually lead to hearing loss
(Campbell et al. 2001 and references therein). Muta-
tions that abrogate ion transport in the chloride-iodide
transport protein, pendrin, cause syndromic hearing
loss in Pendred syndrome, whereas apparently less-se-
vere mutations that decrease ion flow are responsible
for isolated hearing loss in DFNB4 (Scott et al. 2000).

TECTA Mutations in DFNA8/12 and DFNB21

Mutations in TECTA, encoding o-tectorin, are re-
sponsible for nonsyndromic hearing loss in both dom-
inant (DFNAS8/12) (Verhoeven et al. 1998; Alloisio et al.
1999; Balciuniene et al. 1999) and recessive (DFNB21)
(Mustapha et al. 1999) types. DFNB21-affected family
members, who have prelingual severe-to-profound sen-
sorineural deafness, harbor a splice-site mutation pre-
dicted to lead to a truncated a-tectorin protein. DFNAS8/
DNFA12-affected members, who demonstrate prelin-
gual and stable midfrequency hearing loss, have missense
mutations that replace conserved amino acid residues
within the zona pellucida domain of «-tectorin (Ver-
hoeven et al. 1998; Alloisio et al. 1999). Affected mem-
bers of another family with DFNA12, who, interestingly,
also have significant linkage to the DFNA2 locus (MIM
600101), show a later-onset progressive hearing loss and
have a mutation in a different domain of a-tectorin, the
zonadhesion/von Willebrand domain, resulting in re-
placement of a cysteine with a serine in one of the von
Willebrand repeats (Balciuniene et al. 1999). One pos-
sible explanation for the observed spectrum of hearing
phenotypes, ranging from prelingual to late-onset pro-
gressive in families with the dominant form of hearing
loss, may lie in the position of the mutation in the protein
(i.e., the particular domain affected). This may differ-
entially alter the ability of a-tectorin to interact with
certain molecules and may thus result in various degrees
of improper assembly of the noncollagenous tectorial
matrix (Balciuniene et al. 1999). Another fascinating
possibility is that the difference in phenotypes is due to
modification of TECTA by a gene at another locus (e.g.,
DFNAZ2) (Balciuniene et al. 1999).

Modifier Genes

Modifier genes influence the expression or function of
other genes. Several modifier loci and their genes for
hereditary hearing loss have been discovered in both
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humans and mice. In the mouse, modifier genes have
been identified as a result of divergent phenotypes at-
tributed to the genetic background of various strains.

tub and moth1

Tubby mice are homozygous for an autosomal reces-
sive mutation (tub/tub [MGI accession number 98868])
causing adult-onset insulin-resistance—associated obesity
and early-onset cochlear and retinal degeneration (Ikeda
et al. 1999). Obesity is observed in tubby mice after age
12 wk, although abnormal electroretinograms and au-
ditory brain stem responses are detectable as early as
age 3 wk (Ikeda et al. 1999). Although it is known that
the tub gene encodes a transcription factor (Boggon et
al. 1999), the exact mechanisms by which the tub allele
leads to the tubby phenotypes have not been elucidated.
A genetic modifier of tubby hearing, moth1 (MGI ac-
cession number 1346024), can worsen or prevent the
tubby hearing impairment, depending on the type of
moth1 allele and on whether one or both copies of the
allele are present (Ikeda et al. 1999). A dominant moth1
allele protects the tubby mouse against hearing loss in
one strain (CAST/Ei.B6; tub/tub), whereas a recessive
moth1 allele worsens the deafness in a different tubby
strain (C57BL/6; tub/tub) (Ikeda et al. 1999).

dfw and mdfw

Another example of a deafness modifier gene in mice
is mdfw (modifier of deaf waddler [MGI accession num-
ber 1202391]), for which two different alleles have been
identified (Noben-Trauth et al. 1997). Deaf waddler
mice are homozygous for an autosomal recessive mu-
tation (dfw [MGI accession number 105368]), exhibit
highly unbalanced and uncontrolled movements by age
2 wk, and are profoundly deaf by age 3 wk as a result
of progressive hair-cell degeneration (Lane 1987; Street
et al. 1995; Noben-Trauth et al. 1997). dfw encodes
an ATPase pump (Atp2b2 [MGI accession number
105368]) that is required for maintenance of low cy-
tosolic Ca** by pumping Ca*" out of both auditory and
vestibular hair cells (Kozel et al. 1998; Street et al. 1998).
Interestingly, in one strain (CBy), heterozygotes for dfw?
exhibit abnormal auditory brain stem responses (ABR)
and age-dependent progressive hearing loss, whereas in
another strain (CBy/CAST/Ei) only about one-quarter of
dfw?” heterozygotes displayed increased ABR thresholds
(Noben-Trauth et al. 1997). This difference in pene-
trance of the hearing impairment in the two strains has
been attributed to a naturally occurring modifier, mdfuw,
mapped to chromosome 10 (Noben-Trauth et al. 1997).
The dominant CAST/Ei-derived mdfw allele protects
dfw heterozygotes from hearing loss, whereas the reces-
sive CBy-derived mdfw allele permits hearing loss in the
dfw heterozygotes.

Am. ]J. Hum. Genet. 69:923-935, 2001

DFNB26 and DFNMT

Autosomal recessive, nonsyndromic, sensorineural
hearing loss has been mapped to 4q31 in a large con-
sanguineous Pakistani family and has been designated
“DFNB26” (MIM 605428) (Riazuddin et al. 1999). Of
interest, seven family members homozygous for the mu-
tant DFNB26 haplotype were found to have normal
hearing. A second linkage analysis identified a deafness
modifier gene (DFNM1 [MIM 605429]), mapped to
1924, which is thought to suppress the DFNB26 deaf-
ness in these individuals. Identification of these two
genes (DFNB26 and DFNM1) will lead to an under-
standing of the interaction of their gene products and
facilitate elucidation of the pathway that leads to the
DFNB26 phenotype.

Mitochondrial Modifier Locus

A mouse model of hearing loss modified by a mito-
chondrial locus has been identified. A mitochondrial al-
lele, causing presbycusis, or age-related hearing loss, has
been shown to interact with a nuclear locus (ahl [MGI
accession number 87972]) on mouse chromosome 10
(Avraham 2001). Mice with both copies of the A/J ahl
allele were found to have more-severe hearing loss than
mice with a single allele (Johnson et al. 2000).

The Future of Auditory Research

The past decade has witnessed impressive advancements
in auditory research. With both the human and mouse
genomes sequenced to near completion and the advent
of gene chip technology, gene discovery and functional
genomics in the auditory system will continue at a rapid
pace. To this end, we are ever closer to an enhanced
understanding of the hearing process, which will lead to
increased availability of diagnostic and presymptomatic
genetic testing options, early intervention, and disease-
based treatments.
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Connexins and Deafness
deafness/

Hereditary Hearing Loss Homepage, http://www.uia.ac.be/
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.ncbi.nlm.nih.gov/Omim/ (for genes: 12§ rRNA [MIM
561000], ATP6B1 [MIM 192132], CDH23 [MIM 605516],
CLDN14 [MIM 605608], COCH [MIM 603196],
COL11A1 [MIM 120280], COL11A2 [MIM 120290],
COL1A2 [MIM 120160], COL2A1 [MIM 120140],
COL4A3 [MIM 120070], COL4A4 [MIM 120131],
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COL4AS [MIM 303630], DDP [MIM 304700], DFNAS
[MIM 600994], DIAPH1 [MIM 602121], EDN3 [MIM
131242], EDNRB [MIM 131244], EYA1 [MIM 601653],
EYA4 [MIM 603550], GJ/B2 [MIM 121011], GJ/B3 [MIM
603324], GJB6 [MIM 604418], KCNE1 [MIM 176261],
KCNQ4 [MIM 603537], KVLOT1 [MIM 192500], MITF
[MIM 156845], MYH9 [MIM 160775], MYO1S [MIM
602666], MYO6 [MIM 600970], MYO7A [MIM 276903],
NDP [MIM 310600], OTOF [MIM 603681], PAX3 [MIM
193500], PCDH15 [MIM 605514], PDS [MIM 274600],
PMP22 [MIM 601097], POU3F4 [MIM 300039], POU4F3
[MIM 602460], SOX10 [MIM 602229], SOX9 [MIM
114290], TCOF1 [MIM 154500], TECTA [MIM 602574],
TMPRSS3 [MIM 605511], tRNA-glu [MIM 590025],
tRNA-len [MIM 590050], tRNA-lys [MIM 590060], tRNA-
ser [MIM 590080], USH1C [MIM 605242], USH2A [MIM
276901], USH3 [MIM 276902], WES1 [MIM 606201];
nonsyndromic deafness disorders: DFNA1 [MIM 124900],
DENA2 [MIM 600101], DENA3 [MIM 601544], DENAS
[MIM 600994], DFENAS8 [MIM 601543], DFNA9 [MIM
601369], DFNA10 [MIM 601316], DENA11 [MIM
601317], DFNA12 [MIM 601842], DFNA13 [MIM
601868], DFNA15 [MIM 602459], DENA17 [MIM
603622], DFNA22 [MIM 600970], DFNB1 [MIM 220290],
DENB2 [MIM 600060], DENB3 [MIM 600316], DENB4
[MIM 600791], DENB8 [MIM 601072], DENB9 [MIM
601071], DENB10 [MIM 605316], DFNB12 [MIM
601386], DFNB21 [MIM 603629], DFNB29 [MIM
605608], DFN1 [MIM 304700], DFN3 [MIM 304400],
sensorineural deafness [MIM 590080]; and syndromic deaf-
ness disorders: Alport syndrome [MIM 104200, 203780],
BO syndrome [MIM 602588], BOR syndrome [MIM
113650], campomelic dysplasia [MIM 114290], Charcot-
Marie-Tooth disease [MIM 118220], diabetes mellitis and
deafness [MIM 520000], distal renal tubular acidosis as-
sociated with sensorineural deafness [MIM 267300], Fecht-
ner syndrome [MIM 153640] , JLNS1 [MIM 220400],
JLNS2 [MIM 220400], maternally inherited diabetes and
deafness [MIM 590025], May-Hegglin syndrome [MIM
155100], mitochondrial deafness [12S rRNA | [MIM
221745], MERRF [MIM 545000], MELAS [MIM 540000],
Norrie disease [MIM 310600], osteogenesis imperfecta
[MIM 166200], palmoplantar keratoderma and deafness
[MIM 590080], Pendred syndrome [MIM 274600], pro-
gressive myoclonic epilepsy, ataxia and hearing loss [MIM
590080], STL1 [MIM 108300], STL2 [MIM 604841],
Treacher Collins [MIM 154500], USH1B [MIM 276903],
USH1C [MIM 605242], USH1D [MIM 601067], USH1F
[MIM 605514], USH2A [MIM 276901], USH3 [MIM
276902], Waardenburg syndrome type I [MIM 193500],
Waardenburg syndrome type II [MIM 193510], Waarden-
burg syndrome type III [MIM 148820], Waardenburg syn-
drome type IV [MIM 277580], and Wolfram syndrome
[MIM 606201])

Mouse Genome Informatics (MGI), http://www.informatics
.jax.org/ (for ahl [MGI accession number 879721, Atp2b2
[MGI accession number 105368], cdh23 [MGI accession
number 1890219], mdfw [MGI accession number
1202391], moth1 [MGI accession number 1346024],
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Pcdh15 [MGI accession number 1891428], and tub [MGI
accession number 98868])
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